Matrix inversion 指“矩阵求逆”:对一个可逆矩阵 (A) 找到其逆矩阵 (A^{-1}),使得
[
AA^{-1}=A^{-1}A=I
]
其中 (I) 是单位矩阵。常用于解线性方程组、信号处理、控制、统计与机器学习等。并非所有矩阵都可求逆(例如行列式为 0 的奇异矩阵)。
/ˈmeɪtrɪks ɪnˈvɝːʒən/
We used matrix inversion to solve the system of linear equations.
我们用矩阵求逆来解这组线性方程。
In numerical computing, direct matrix inversion can be unstable, so we often use factorization methods instead.
在数值计算中,直接求逆可能不稳定,因此我们常改用分解方法来处理。
matrix 源自拉丁语 matrix,本义与“母体、载体”相关,后来在数学中引申为“把数按行列排列成的表”。inversion 来自拉丁语 inversio,含“翻转、反向”之意;在数学里引申为“求逆/逆运算”。合在一起就形成“对矩阵做逆运算”的术语。