V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
omnigeeker
V2EX  ›  推广

云存储的未来: Scale Up 还是 Scale Out?

  •  
  •   omnigeeker · 2018-12-05 14:26:58 +08:00 · 1594 次点击
    这是一个创建于 2230 天前的主题,其中的信息可能已经有所发展或是发生改变。

    云存储的几十年发展历程,其计算架构模型,也从 Scale Up 走向 Scale Out。但是展望未来数字世界的海量需求,目前流行的模型还能够持续满足吗?本文通过对云存储历史的回顾,及对 Scale Up 和 Scale Out 两种扩展模型的诠释,来揭开云存储的未来模式。

    1. 云存储及其历史

    简而言之,云存储( cloud storage )就是将数字内容安全的存储在服务器上,从而任何连接互联网的设备可以方便的获取。首先让我们简单回顾一下云存储的历史。

    云存储的早期雏形要回溯到上个世纪的 90 年代,也就是互联网泡沫时期( dot-com boom ),当时有许多家公司,例如 EVault, NetMass, Arkeia 和 CommVault 等等[1]均提供在线数据备份服务,当然它们绝大部分也随着互联网泡沫的破碎而烟消云散了。少数幸存下来的有一家叫 Veritas NetBackup 最后也被 Symantec 收购,现在依旧提供 Symantec NetBackup 的在线存储服务。

    而真正让大家耳熟能详的云存储是 2006 年由 Amazon 提供的 AWS S3 云存储服务,其最具有革命意义的变革是,提出了即买即用( pay-per-use )的价格模型,使得云存储的使用像水电一样可计算衡量。从此云存储以 S3 为标准一路绝尘,我们所熟悉的大厂,比如 Netflix, Pinterest, Dropbox 也是 S3 的顾客。尾随的 Microsoft 和 Google 也于 2010 年分别发布了类似的 Azure Blob Storage 和 Google Storage 的存储服务。

    云存储真正发展的十几年中,见证了移动互联网的崛起,大数据的生机勃发,人工智能的再次复兴,并能够展望到未来物联网,无人驾驶及各类机器人自动化的世界。海量数据的产生,存储,分析,预测及应用,快速以正反馈循环方式,推进着人类社会向数字世界大步迈进。所以,为了适应数据存储新的需求,各家云存储产品的应用场景及价格模型,已从单一向多元发展,比如 AWS S3 就有 Standard,Intelligent-Tiering,Standard-IA,One Zone-IA,Glacier 和 Glacier Deep Archive 六类存储产品来满足各类使用场景,我会在未来的文章里针对性的细讲一下。而本文重点所探讨的是,目前云存储的基础架构体系是否能够适应未来数据存储的要求和挑战?为了回答这个问题,让我们先简单回顾一下计算机体系架构里的 Scale Up 和 Scale Out 扩展模型。

    2. Scale Up 和 Scale Out ?

    Scale Up 又称为垂直扩展( scale vertically )[2],意为在单节点上添加资源,如 CPU,内存和存储,在纵向上扩展从而获得更多计算或存储能力; Scale Up 初期能够快速达到升级目的,操作起来相对比较简单,但随着计算或存储的要求越来越高,硬件资源的添加可能已经达到极限,不仅单节点的造价非常昂贵,维护成本很高,而且更容易留下单点故障的隐患。传统的 RAID ( Redundant Array of Inexpensive Disks )存储就是此种模式。

    Scale Out 又称为水平扩展( scale horizontally )[2],意为在分布式环境下,通过添加节点计算或存储资源,在横向上满足更多的计算存储需求;随着计算和存储单位价格的降低和效率的提升,使用低端的商用( commodity )系统,利用分布式技术可以搭建起“超级计算”中心,以及后来衍生出来的私有或公有云平台解决方案。虽然分布式系统会带来一定程度上的软件复杂度和管理困难,但由软件定义的计算和存储解决方案,能够以较低的价格和较高的鲁棒性,优雅的解决了海量增长的计算存储需求,也是目前云平台的主流技术。但它就一定能够承载未来的更加海量的需求吗?云存储的未来是什么?方向是向左还是向右?

    3. 未来向左还是向右?

    话说天下大势, 分久必合, 合久必分,事物发展的规律似乎从来就没有什么绝对。当下,云平台内部似乎已完全是 Scale Out 模式了,但当我们把镜头再拉远一点,从云平台在全球部署的每一个可用区来看,整体上它又是一个 Scale Up 模型,不是吗?单点投入巨大,耗费能源,使用成本高昂。而相反,随着强大的计算,存储和带宽能力能够进入寻常家庭、工作和生活等边缘节点,资源闲置或者不均衡使用也变得越来越明显。那么, - 是否能够将这些边缘节点的计算存储能力结合起来,组成一个真正意义上的 Scale Out 平台,提供人们日益增长的计算存储需求? - 可否将浪费或者不对等的资源重新组合,提供一个更加节能环保的绿色 Scale Out 平台? - 可否摒弃中心化的单点故障和数据安全隐患,真正做到廉价高效,零数据泄露的 Scale Out 平台?

    答案是应该可以而且必须可以!

    纵观云存储平台的发展历史,从单节点的 Scale Up 模式走向可用区内部的 Scale Out 模式,又从内部的 Scale Out 模式走向整体上相对的 Scale Up 模式。而未来数字世界的海量计算和存储需求的满足,一定需要真正意义上的全球 Scale Out 模型,那就是把边缘节点和半中心化节点高效且系统的组织起来,减少浪费,提高效率,节省成本,去除中心。将天空中几块为数不多的白云,变成漫天遍布的朵朵白云,让人们自由定价、自由选择、自由组合。

    挑战虽然巨大,但未来很美好,让我们一起努力迎接云存储的明天!

    [1]: History of Online Storage

    [2]: Wiki Scalability

    文章作者:Bruce Lee ( PP.IO 总架构师)

    转载请注明出处

    如果有关于 PPIO 的交流,可以通过下面的方式联系我:

    加我微信,注意备注来源

    wechat:omnigeeker

    目前尚无回复
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   1253 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 23ms · UTC 17:38 · PVG 01:38 · LAX 09:38 · JFK 12:38
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.