设备是 mbp m3 16G 内存的。
因为 m 芯片并不好安装 xgboost 等库,经过一番搜索了解到可以使用 Docker
通过摸索构建了一个基于 Python 的镜像(包含 xgb 等机器学习库)
但是在训练模型的时候,经常报错,表现为 notebook 崩溃需要重来,或者是 python 脚本 killed
经过进一步搜索,发现可能和内存、cpu 有关。
我在创建容器的时候,并没有指定一些 cpu 、内存的参数,在 desktop 中已经将相关设置拉满了
"CpuShares": 0,
"Memory": 0,
"NanoCpus": 0,
"CgroupParent": "",
"BlkioWeight": 0,
"BlkioWeightDevice": [],
"BlkioDeviceReadBps": [],
"BlkioDeviceWriteBps": [],
"BlkioDeviceReadIOps": [],
"BlkioDeviceWriteIOps": [],
"CpuPeriod": 0,
"CpuQuota": 0,
"CpuRealtimePeriod": 0,
"CpuRealtimeRuntime": 0,
https://imgur.com/a/oKDBMmh.jpg
理论上这不就是可以随意使用 mbp 的内存和 cpu 了?
进一步在重现问的时候,使用 docker stats 发现,在数据读取和处理的时候,
1 、cpu 和 内存使用都会涨,在数据读取完之后,cpu 立刻 0%,但是 mem usage 没有变化,还是 10G 左右,继续执行代码,马上就崩溃了,为啥内存不会恢复?
2 、即使没有限制使用 cpu 核心数,但是数据处理的时候, 容器的 cpu 占比可能 200%,但是电脑还是有 50% 的 cpu 剩余,为啥用不满?
3 、在建模的时候,容器的 cpu 可以飙升到 600%,但是内存使用居然没有用满?
实在是不怎么使用 docker ,总是感觉是不是容器不能很好的利用 mbp 的资源,理论上是比较好的设备了,居然跑个 xgb 跑不动
还是是我的数据量太大了吗?(差不多 15w 行 x 1000 列)
1
ysc3839 178 天前 via Android
不如直接用虚拟机
|
2
javazero 178 天前
建议上 Kaggle
|
7
ConfusedBiscuit 178 天前 1
我来详细解释一下:
1. Docker 上流行的容器其实都是 Linux 容器(理论上也支持 Windows 容器,但是没见有人用过),这种容器在 Windows 和 Mac 上其实都是自动起了一个 Linux 虚拟机( Windows 上基于 WSL2 的也是虚拟机),然后在虚拟机里运行 Docker 。 2. 基本认同 @ysc3839 的方案,我也采用自己跑个 Linux 虚拟机的方案,但是本质上区别不大。 3. 关于内存问题,如果指的是整个 Docker 的内存占用(其实就是虚拟机的内存占用)确实有可能没法立马恢复(这要看他虚拟机的具体设计,我确实不太了解)。mac 上 Docker 这种实质上在虚拟机里跑的方案,天生就注定了不太适合做需要很高性能的事情。 4. xgboost 我确实没研究过,但是经常报错可能有以下可能: ( 1 )内存不够,被 Linux 的 OOM kill ,我觉得最大的可能是这个(不可能占满 16G 的,你的 Mac 系统自身就占了不少) ( 2 ) arm 适配不足,可能适配了,但没完全适配,导致某些情况会报错 总结: 1. 用 arm 的 mac 做这个事情确实不太合适(兼容性、性价比) 2. 性价比最高的可能是搞个 Linux 机器,退而求其次 Windows+WSL2 的方案也不错,我就试过在 WSL2+Docker 的环境调用 CUDA ,效果不错 |
8
ConfusedBiscuit 178 天前
补充一下,我尝试 WSL2+Docker 的环境调用 CUDA 的时候,也有内存问题,但是由于我机器 64G 内存,跑模型的时候 WSL2 最高占用过 32G 。所以 OP 可以试着换 64G 内存的 mac 试试,16G 再套个虚拟机确实是有点儿不够。
|
9
superchijinpeng 178 天前
orbstack
|
10
yinmin 178 天前
mac 跑 docker 和 linux 跑 docker 不一样。linux 跑 docker 是进程级别的隔离,默认可以用 linux 所有内存和 CPU ; mac 跑 docker 是用虚拟机,默认好像是分配 2GB 内存。
你到 docker - preferences - resources 里看看是否可以调整内存量。 |
11
ggp1ot2 OP @ConfusedBiscuit 非常感谢,我本以为,开虚拟机就需要 VMware 等软件,可能会更耗内存
其次,我使用 docker 的原因是经常需要切换 python 和相关包的版本,可以通过 dockerfile 来控制,方便和同事交接 看来确实可能是 16G 的内存的问题,因为切小数据集就可以跑动的了,本以为最新的 mbp 即使内存 16G 也很能打 可能确实用 mac 做算法,不是一件高性价比的事情 再次感谢 |
12
yinmin 178 天前
docker - preferences - resources 的内存不能拉满的,建议改成 8GB 、10GB 、12GB 依次试试是否有改善。
|
13
cdlnls 178 天前
记得 macos 版本的 docker 是可以设置 vm 虚拟机的内存大小的,可以看看设置里面
|