V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
V2EX 提问指南
slysly759
V2EX  ›  问与答

请教一道算法题~

  •  
  •   slysly759 · 2017-01-25 23:35:39 +08:00 · 2172 次点击
    这是一个创建于 2897 天前的主题,其中的信息可能已经有所发展或是发生改变。

    起因

    在群里看到一道算法题 题目如下:

    求 1<=i<=10**12 范围内所有 d(i)的和的末 12 位, d(i)表示 i 的正约数的和, i 为整数

    因为我本人对非科班 算法导论买回来拿去垫杯子了(书:怪我咯) 就看了一点冒泡 桶排 快排 啥的 什么 leetcode 都没有刷过,纯粹小白。

    当时想法很简单

    1. 数字很大,很多,排序我就用桶吧
    2. 自然数由 0 , 1 素数和合数构成 (小学课本写的。。) 后来我发现 合数可以由 多个乘积构成 也就是我要找到素数列表 然后组合成为所有 0-10**12 的自然数就好了

    整理一下思路就是:

    1. 在遍历的过程中判断该数字是否为素数,是就放进素数列表,否就是合数,我需要写一个方法来解析这个合数
    2. 合数由多个素数的乘积构成比如 6=2^1 * 3^1 这样构成 因此可以通过遍历素数列表 看能否余数为零,为零我就在其基础上加一 变成{6 :{2:1,3:1,5:0}} 这样一个映射表
    3. 再循环过程中根据质数和定律自动计算并求和

    现在面临的问题是:

    1. 跑到 10000 就需要 38 秒 这样算下来看起来需要到明年,这个算法还是很耿直

    我看到知乎上有优化算法,期待大神能够帮我解释一下: 如图:

    按图索骥好像看到这样一些结论:

    在一个大于 1 的数 a 和它的 2 倍之间(即区间(a, 2a]中)必存在至少一个素数。

    存在任意长度的素数等差数列。(格林和陶哲轩, 2004 年)

    顺便说一下 现在进群的要求不低啊 开学我要回去拿回我的垫杯书 囧

    4 条回复    2017-01-26 13:31:48 +08:00
    Xs0ul
        1
    Xs0ul  
       2017-01-25 23:55:43 +08:00   ❤️ 1
    你的第一个图应该就能解释是怎么优化的,第二个图挂了不知道是啥。

    证明反而麻烦,我就拿个例子来解释好了。方便说明,我把 i 的范围改成 1 ~ 4 (看懂了就知道 10^12 同理)。

    约数有: 1 : 1 , 2 : 1 , 2 , 3 : 1 , 3 , 4 : 1 , 2 , 4

    式子的第一项,求和方法是 (1) + (1 + 2) + (1 + 3) + (1 + 2 + 4) = 15

    而优化的方法,也就是第二项 /第三项,求和方法是 (1 * 4) + (2 * 2) + (3 * 1) + (4 * 1) = 15 。乘法中左边是 1 ~ 4 ,右边是 [4 / i]。

    归根结底,是改变了求和的顺序。实际上,所有 d 的倍数,在求和的时候都会被加一次(作为 1d 、 2d ……[10^12 / d]d 的约数),一共就是 [10^12 / d] 次。优化的方法好处就是,不必花时间去找约数,而求约数是相当费力的一件事。
    mickeyandkaka
        2
    mickeyandkaka  
       2017-01-26 00:00:40 +08:00   ❤️ 1
    http://blog.csdn.net/skywalkert/article/details/50500009

    d(i)是积性函数,答案可以在 n^(2/3)的时间得到。

    不用谢。
    slysly759
        3
    slysly759  
    OP
       2017-01-26 13:31:15 +08:00
    @mickeyandkaka ~ ~ thx
    slysly759
        4
    slysly759  
    OP
       2017-01-26 13:31:48 +08:00
    @Xs0ul 谢谢 我的理解更深了
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   3139 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 28ms · UTC 00:13 · PVG 08:13 · LAX 16:13 · JFK 19:13
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.