V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
lvhuiyang
V2EX  ›  外包

[计算机作业] 数据科学的作业,工作量应该小于 1 工作日,预算 800 元

  •  
  •   lvhuiyang · 2022-12-04 10:32:15 +08:00 · 1784 次点击
    这是一个创建于 698 天前的主题,其中的信息可能已经有所发展或是发生改变。

    帮朋友做一个数据科学相关的计算机作业,是对 YouTube 视频播放数据进行分析,完成了 Part 1-3 ,找一位懂数据分析和机器学习的老哥帮忙做一下 Part 4 ,工作量应该小于 1 工作日,预算 800 元,感兴趣的可以留一下联系方式

    • PART 1 – Defining the Problem and Questions (已完成)
    • PART 2 – Cleaning the Data (已完成)
    • PART 3 – Carrying out an Exploratory Analysis (已完成)
    • PART 4 - Developing ML and DL Prediction Model (未完成,需要做的是这部分)

    已完成的代码示例: https://colab.research.google.com/drive/1MkSpgV_XZVUcNIT1gI-b7Abd0ET8uT0W?usp=sharing

    PART 4 具体要求

    When your data is ready for modelling, you can start building your prediction model. As a starting point for your implementation, consider the following steps:

    • Convert the Pandas dataframes into NumPy arrays that can be used by scikit_learn.
    • Create an array that extracts only the feature data that you want to work with.
    • Normalize your data as some ML models require the input data to be normalized.
    • Split your data into train and test or use K-Fold cross validation.
    • Create a decision tree classifier and fit it to your training data.
    • Display the resulting decision tree.
    • Measure the accuracy of the resulting decision tree model using your test data.
    • Create a random forest classifier, fit it to your data and measure the accuracy.
    • Create a random forest classifier, fit it to your data and measure the accuracy.
    • Create SVM with linear kernel classifier, fit it to your data and measure the accuracy.
    • Create KNN classifier, fit it to your data and measure the accuracy.
    • WriteaforlooptorunKNNwithKvaluesrangingfrom1to50andseeifKmakesa substantial difference. Make a note of the best performance you could get out of KNN.
    • Use Keras to set up a neural network with 1 binary output neuron (for binary classification only) and see how it performs. You can run a large number of epochs to train the model if necessary.
    • Try different neural network topologies by adding additional layers and use Dropout at each step to prevent overfitting.
    第 1 条附言  ·  2022-12-04 16:37:02 +08:00
    已找到,结贴,谢谢大家的回复。
    yifangtongxing28
        1
    yifangtongxing28  
       2022-12-04 10:58:17 +08:00
    800 元,外包都 1.5k 一天了兄弟
    lvhuiyang
        2
    lvhuiyang  
    OP
       2022-12-04 11:29:27 +08:00
    @yifangtongxing28 reply #1 呃预算确实有限,确实没法和一线大厂的日薪相比

    不过相比而言,这个需求工作量应该不大,而且没有后续纠缠的困扰,更适合周末没啥事随便可以做一下的朋友
    phpfpm
        3
    phpfpm  
       2022-12-04 13:38:14 +08:00
    你这个就是高考压轴题的最后一问
    hello2090
        4
    hello2090  
       2022-12-04 15:45:15 +08:00 via iPhone
    你这 14 个点,一点半小时也要 7 小时了。周末随便做一下我觉得不太可能。。
    yuzhibopro
        5
    yuzhibopro  
       2022-12-04 19:54:24 +08:00
    这里斗胆预言,日薪大于 800 的都不会考虑。
    haijiao
        6
    haijiao  
       2022-12-04 21:11:00 +08:00   ❤️ 2
    最烦这些 bb 的,人家就这点预算,你感觉合适你就做,不想做别吱声,天天阴阳怪气的有意思么,傻缺一样
    BHGSniper
        7
    BHGSniper  
       2022-12-05 11:16:51 +08:00
    能掉包这种就正常机器学习作业几个小时的事儿,这价格差不多了
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   2463 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 35ms · UTC 01:19 · PVG 09:19 · LAX 18:19 · JFK 21:19
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.